, . PDF Download
e DIGITAL -)
o.) ACM . pswdtione acmopen };\3 3696630.3730572.pdf
L1eRARy (@ EREam pen : 01 February 2026
Check for . :
updates Total Citations: 0

Total Downloads: 444

¢ Latest updates: https://dl.acm.org/doi/10.1145/3696630.3730572
Published: 23 June 2025

SHORT-PAPER Citation in Bi
itation in BibTeX format
Aligning Core Aspects: Improving Vulnerability Proof-of-Concepts via
. h FSE Companion '25: 33rd ACM
CrOSS-SOUI"CC lns'g ts International Conference on the
Foundations of Software Engineering
LINGXIAO WANG, Tianjin University, Tianjin, China June 23 - 28, 2025

Trondheim, Norway
WENJING DANG, Tianjin University, Tianjin, China

Conference Sponsors:
MENGYAO ZHAO, Tianjin University, Tianjin, China SIGSOFT
YUE WANG, Tianjin University, Tianjin, China
XIANZONG WU, Tianjin University, Tianjin, China

SEN CHEN, Nankai University, Tianjin, China

Open Access Support provided by:
Tianjin University

Nankai University

FSE Companion '25: Proceedings of the 33rd ACM International Conference on the Foundations of Software Engineering (June 2025)
https://doi.org/10.1145/3696630.3730572
ISBN: 9798400712760

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3696630.3730572
https://dl.acm.org/doi/10.1145/3696630.3730572
https://dl.acm.org/doi/10.1145/contrib-99661658648
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/contrib-99661658855
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/contrib-99661658398
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/contrib-99661659234
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/contrib-99661658353
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/contrib-99659033476
https://dl.acm.org/doi/10.1145/institution-60018038
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/institution-60018038
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3696630.3730572&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/fse
https://dl.acm.org/conference/fse
https://dl.acm.org/conference/fse
https://dl.acm.org/sig/sigsoft
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696630.3730572&domain=pdf&date_stamp=2025-07-28

Aligning Core Aspects: Improving Vulnerability
Proof-of-Concepts via Cross-Source Insights

Lingxiao Wang Wenjing Dang Mengyao Zhao
Tianjin University Tianjin University Tianjin University
China China China
wlx_0613@tju.edu.cn dangwenjing@tju.edu.cn mengyaozhao@tju.edu.cn
Yue Wang Xianzong Wu Sen Chen"
Tianjin University Tianjin University Nankai University
China China China

16622536761@163.com

Abstract

For vulnerabilities, Proof-of-Concept (PoC) plays an irreplaceable
role in demonstrating the exploitability. PoC reports may include
critical information such as specific usage, test platforms, and more,
providing essential insights for researchers. However, in reality, due
to various PoC templates across PoC platforms, PoC reports exten-
sively suffer from information deficiency, leading the suboptimal
quality and limited usefulness. Fortunately, we found that informa-
tion deficiency of PoC reports could be mitigated by the completion
from multiple sources given the same referred vulnerability.

In this paper, we conduct the first study on the deficiency of
information in PoC reports across public platforms. We began by
collecting 173,170 PoC reports from 4 different platforms and de-
fined 8 key aspects that PoCs should contain. By integrating rule-
based matching and a fine-tuned BERT-NER model for extraction of
key aspects, we discovered that all PoC reports available on public
platforms have at least one missing key aspect. Subsequently, we
developed a multi-source information fusion method to complete
the missing aspect information in PoC reports by leveraging CVE
entries and related PoC reports from different sources. Finally, we
successfully completed 69,583 PoC reports (40.18% of all reports).

CCS Concepts

« Security and privacy; » Software and its engineering;

Keywords
Proof-of-Concept, Software Security

ACM Reference Format:

Lingxiao Wang, Wenjing Dang, Mengyao Zhao, Yue Wang, Xianzong Wu,
and Sen Chen. 2025. Aligning Core Aspects: Improving Vulnerability Proof-
of-Concepts via Cross-Source Insights. In 33rd ACM International Conference

“Sen Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FSE Companion °25, Trondheim, Norway

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1276-0/2025/06

https://doi.org/10.1145/3696630.3730572

wxz_buta@tju.edu.cn

1774

senchen@nankai.edu.cn

on the Foundations of Software Engineering (FSE Companion ’25), June 23—
28, 2025, Trondheim, Norway. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3696630.3730572

1 Introduction

In the field of software security, vulnerability reports are the pri-
mary means by which researchers learn about security flaws. Proof-
of-Concept (PoC) plays an indispensable role by offering practical
exploitation methods and code examples. PoC reports usually in-
volve a description, affected software, and additional information
that helps gain a deeper understanding of the vulnerabilities at hand.
PoCs assist developers in pinpointing the vulnerabilities, thereby
facilitating the remediation process and evaluation of exploitabil-
ity [2, 14, 16].

Furthermore, the content of PoC reports, including usage details
and testing platforms, has been analyzed in a few studies [7, 9],
which emphasize the significant impact of such information on
the applicability of PoCs. Mu et al. [9] specifically highlighted the
crucial role that PoC reports play in the process of vulnerability
reproduction. However, despite their importance, the quality of
PoC reports varies greatly, as noted in recent research [1]. The
type and completeness of information differ significantly across
platforms, resulting in frequent omissions of critical details. This
inconsistency reduces the overall usability of public PoC reports.
Furthermore, there is still a lack of comprehensive research and ef-
fective methodologies to systematically address the issue of missing
information in vulnerability PoCs.

To bridge the gap, we conducted the first empirical study to
understand the information deficiency of PoC reports across public
vulnerability report platforms. Specifically, this paper investigates
the prevalence of missing information in PoC reports from various
sources and proposes a multi-source information completion ap-
proach to effectively rectify these gaps. First, we collate PoC reports
from multiple public repositories and conduct a series of analytical
studies. ® Evaluating Information Deficiency of PoC Reports.
We identified 8 key aspects that PoC reports should encompass.
For each aspect, we develop specific extraction approaches to accu-
rately identify and extract information. We found on average only
56% of aspects were present in PoC reports, indicating a significant
absence of crucial data. @ Completion of PoC Aspects Based
on Multiple Sources. To remedy the missing information, we
cross-reference PoCs with corresponding CVE entries, facilitating

https://orcid.org/0009-0006-9364-8851
https://orcid.org/0009-0006-2169-8024
https://orcid.org/0009-0001-3168-7787
https://orcid.org/0009-0009-1217-8926
https://orcid.org/0009-0003-8539-4757
https://orcid.org/0000-0001-9477-4100
https://doi.org/10.1145/3696630.3730572
https://doi.org/10.1145/3696630.3730572
https://doi.org/10.1145/3696630.3730572

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

a linkage between different sources of PoC reports. We categorized
the PoCs into code-based and text-based, designed methods to com-
plete PoC reports with related CVE entries and other PoC reports
based on aspects. Our experiments demonstrate the effectiveness
of these completion strategies.

2 Background

2.1 Diverse PoC Submission Templates for
Multiple Platforms

PoC reports are published at diverse sources, including platforms
like ExploitDB [10] and CXSecurity [3], where security researchers,
from independents to professional firms, share PoCs for various
products and vulnerabilities. While both platforms aim to facilitate
security issue resolution, they differ in PoC handling, requiring dis-
tinct submission templates and mandatory information. Incomplete
templates or submissions that do not fully adhere to the specified
templates can result in missing information. This issue is particu-
larly prevalent on platforms with optional template requirements,
such as Packet Storm [11]. Thus, single-source PoC reports often
suffer from severe information deficiencies, which not only dimin-
ish their usability but also hinder a comprehensive understanding of
the relationship between the PoC and the associated vulnerability.

2.2 Motivating Example

To address the information gaps in PoC reports, we utilize comple-
mentary reports from different sources. For instance, a PoC from
Packet Storm related to CVE-2003-0264 provides minimal details
beyond execution code, lacking critical information such as affected
software versions. In contrast, an associated PoC from ExploitDB
for the same CVE [4] includes comprehensive details like the author,
operating platform, and execution results, enriching the dataset.

3 Data Preparation
3.1 Data Collection

To gather the most diverse and reliable open-source PoC data pos-
sible, we first sourced links tagged with “Exploit” from the “Ref-
erences to Advisories, Solutions, and Tools” section on the NVD.
Links associated with the vulnerabilities are tagged according to
their relevance, with links labeled as “Exploit” indicating relevance
to vulnerability exploitation. We crawled all links with the “Exploit”
tag and traced their origins, eventually selecting the top ten data
sources based on reference frequency for preliminary inclusion,
and finally select four data sources with higher-quality and more
structured PoC content: ExploitDB [10], Packet Storm [11], See-
bug [12], and CXSecurity [3]. We employed techniques such as
web scraping and the use of official data, tailoring data extraction
methods specifically for each of the aforementioned 4 sources. This
process involved preliminary data cleaning to remove erroneous
entries that did not contain PoC information. Ultimately, over 200
man-hours were expended to collect a total of 173,170 PoC reports
from these 4 data sources.

3.2 Categorizing PoC into Code and Text

Motivation for Categorizing. Given the diversity of PoC report
formats, employing a uniform processing approach could lead to

1775

Lingxiao et al.

Multiple PoC
Sources

EXPLOIT
FoATNGASE

‘ CVE ID-based Linking ‘ H
|::> Completed PoC.
7 Reports

¢) PoC-based Completion

| CVE Key Aspect Definiton |}

i PoC Key,
] Aspect?

BERT-NER Model Training | |

PoC Key Aspect Definition

Model Classification-based

Rule-based Matching Linking

CVE Aspect Extraction

CVE-based PoC Key Aspect | |

CSECURTY |
Completion ‘ PoC Key Aspect Completion

a) PoC Key Aspect Extraction b) CVE-based Completion

Figure 1: Overview of our study.

a substantial loss of format-specific information. We categorize
PoCs into code-based, text-based, and other forms to preserve the
uniqueness of each type. Code-based PoCs, such as the Python
code PoC [13], involve parsing based on syntactic and functional
attributes. Text-based PoCs consist of narrative descriptions, while
other forms include non-textual media like images or videos, which
require different identification methods [14].

Categorization Approach. Our analysis primarily focuses on
code-based and text-based PoCs, as PoCs in non-textual forms are
less prevalent. We distinguish these types by utilizing regular ex-
pressions to detect programming languages, such as C/C++, HTML,
Java, Python, Perl, PHP, Python, Ruby, and Shell, commonly used
in PoCs. If a PoC does not match these language patterns, it is
classified as text-based [14].

4 Empirical Study

The overview of our study is shown in Figure 1.

4.1 Evaluating Information Deficiency of PoC
Reports

4.1.1 Key Aspects of PoC. To standardize the information in PoC
reports and ensure uniform processing, we identified eight key
aspects crucial for understanding and utilizing them effectively.
Drawing from research by Mu et al. [9], which underscores the
importance of certain elements in reproducing vulnerabilities, we
categorized these aspects into two groups: Exploit and Basic. Ex-
ploit Category represents the exploit value of PoC reports. These 4
aspects are indispensable for the usability of a PoC, including Trig-
ger Step, Verification Oracle, Test Platform, Software Version. Basic
Category represents the reference value, including Title, Author,
Publish Time and Reference. These eight key aspects, termed the
Key Aspects of a PoC report, furnish layered information criti-
cal for the accurate reproduction of vulnerabilities and essential
references for further exploration.

4.1.2 Extraction of Key Aspects. Based on the 8 key aspects of
PoC reports, we have developed extraction methods incorporating
rule-based matching and NLP model-based approaches.

(1) Rule-based Matching: We have established specific rules for
Trigger Step, Verification Oracle, and Reference based on observations.
For the Trigger Step, we have defined keywords such as “steps”,
“reproduce”, and “complie with”, along with regular expressions
to match potential indicators and lists of numerical and alphabetical
steps that may appear in a PoC report. For the Verification Oracle,
we have set keywords like “expected output” and “PoC output”
to identify possible results from program execution. Reference are
generally in the form of links, so we utilized a regular expression
that matches the structure of web URLs to extract.

Aligning Core Aspects: Improving Vulnerability Proof-of-Concepts via Cross-Source Insights

Table 1: Count of completed PoC reports and aspects by CVE
entries.

Test Platform | Software Version
Sources CVE PoCw/CVE | PoCs Aspects | PoCs Aspects
Packet St. 7,465 8,478 1,203 9,605 7,381 19,455
ExploitDB 24,309 26,517 1,784 8,574 18,790 39,728
Seebug 11,861 14,400 666 2,215 9,292 20,158
CXSecurity 18,334 15,812 1,499 6,387 12,285 26,119
Overall 34,024 65,207 5,152 26,781 | 47,748 105,460

(1) Poc w/ CVE refers to PoC reports with CVE IDs.

(2) BERT-NER Model: Referring to the work of Guo et al [6], for
extracting less structured and more nuanced information such as
Test Platform, Software Version, Title, Author, and Publish Time, we
utilized a BERT-NER model [5]. This model was trained on a subset
of 2,500 manually annotated PoCs, using the BIO tagging scheme
to identify these aspects effectively. The training involved 2,000
PoCs, with the remaining 500 serving as a test set. Fine-tuning
parameters included a learning rate of 2e-5, ten epochs, weight
decay of 0.01, label smoothing of 0.1, and Cross-Entropy Loss as
the loss function. The training utilized an NVIDIA RTX 3090 GPU,
ensuring efficient processing and robust model performance for
accurate aspect extraction.

The overall precision and recall for extracting key aspects of
PoC reports are 0.88 and 0.81 respectively. For PoC aspects, the
precision and recall for Publish Time, Reference, Trigger Step, and
Verification Oracle all exceeded 0.9, which ensures great extraction
results for each aspect.

4.2 Completion of PoC Aspects Based on
Multiple Sources

The completion rules comprise two categories: © Completion using
CVE entries and @ Completion using PoC reports.

4.2.1 PoC Completion Approach by Aspects of CVE Entries. To
enhance the connectivity and completeness of PoC reports, we uti-
lized CVE IDs as a unifying reference. We developed source-specific
methods to extract CVE IDs from PoCs, recognizing that their loca-
tions vary across platforms—for example, ExploitDB houses them
in a fixed field. This targeted extraction approach helps avoid the
false positives associated with naive pattern matching. Our collec-
tion identified 34,024 unique CVE IDs linked to 65,207 PoC reports.
Research on CVE entries [15] shows they contain comprehensive
details like affected software and versions, platforms, and vulnera-
bility types. By mapping these CVE details to the corresponding
PoC reports, we can enrich PoCs lacking specific information. This
is critical as PoC reports often serve to validate and reproduce vul-
nerabilities. We specifically correlated Software Version and Test
Platform from PoCs with the Version and Platform from CVE
entries, using Product merely for verifying associations between
CVE entries and PoC reports.

We employed CVE Aspects to complete PoC Aspects. For the
Version, our completion strategy adds version information from
CVE entries related to the same CVE ID, based on the verification
of the Product field. Since one CVE may affect multiple software,

1776

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

the Version entries are mapped in a 1-to-n fashion. A PoC, how-
ever, is typically written for one specific version. Therefore, if the
original PoC lacks version information, we directly complete its
Software Version aspect. If it contains a partial version list, we ap-
pend the missing versions for reference. The Version field in CVE
Aspects corresponds to the Software Version in PoC Aspects, while
the Platform field maps to the Test Platform in PoC reports. Com-
pleteness is evaluated by comparing these two aspects in each PoC
against the corresponding CVE data. This includes both missing
and incomplete cases in the original PoC.

The results of our completion approach are summarized in Ta-
ble 1. In total, 47,748 PoC reports were completed, covering 132,241
aspects. Notably, completions for Software Version far exceed those
for Test Platform. Specifically, 6,482 PoCs and 34,783 aspects were
completed for Test Platform, while 58,222 PoCs and 133,493 as-
pects were completed for Software Version. This gap arises because
not all CVE entries include Platform data, whereas all include
affected Product and Version fields. Furthermore, a single CVE
often involves multiple software and versions, making it rare for a
single PoC to include all relevant version information—resulting
in more opportunities for completion. In conclusion, the experi-
ment confirms the practicality and effectiveness of leveraging CVE
entries to enrich PoC reports.

4.2.2 PoC Completion Approach by other Related PoCs. To estab-
lish connections among PoCs from different data sources, we em-
ployed two distinct methods.

Based on CVE ID. For PoCs linked by a common CVE ID, we lever-
age the CVE as a marker to associate PoCs from varied sources,
as these often pertain to the same vulnerability and share details
like triggering mechanisms and exploitation logic. To enhance the
completeness of PoC reports, we identify gaps in information that
could be mutually filled based on their similarities. Nevertheless,
PoC reports vary significantly due to different programming lan-
guages, impacting the applicability of shared information across
reports. We address this by clustering PoC reports based on both
CVE ID and the programming languages used, acknowledging that
even similar vulnerabilities might be exploited differently across
various reports. To ensure precision in information completion, we
focus on PoCs with high similarity.

Code-Based. We utilize a token-based method to measure code
similarity across languages, including C/C++, Ruby, Python, PHP,
JavaScript, Java, Perl, HTML, and Shell. This involves tokeniz-
ing the code and calculating token frequencies to establish a
frequency dictionary for each PoC, with similarity assessed via
Cosine Similarity [17].

o Text-Based. We employ the Word2Vec [8] to generate text vec-
tors, comparing them using Cosine Similarity to gauge the similar-
ity in described exploit processes. This methodological approach
enables a structured and quantitative comparison of PoCs, facili-
tating the targeted completion of information within PoCs.

Based on Model classification. Linking PoCs without CVE IDs
poses a challenge; hence, we developed a methodology to associate
PoCs affecting the same vulnerability based on their software, ver-
sion, and similarity in content. Initial analysis revealed that PoCs
for the same vulnerability often impact the same software, albeit
potentially different versions, and share similar titles and content.

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

Before Completion
Packet St.
8- Seebug

180k
160k

After Completion
iy 25.00%

—— CXSecurity

o
20.00% 1Y
e 93
73 o, O U
8 ook 15.00% 5%
L sok g o=
B 1000% 2 g
g8
40k 500% 2 9
20k s
0k 0.00%
R - <&) & 5 g &
_\%@ 4@2\ « & P o0 <& 0&0 < & @
<& Q@ A\ v &

Figure 2: Overall completion results.

To establish whether two PoCs target the same software, we
compared the extracted software names for exact matches. Subse-
quently, we used the similarity of titles and PoC content as indi-
cators of identical vulnerabilities. For this purpose, we trained a
BERT classification model [5] to differentiate whether two PoCs are
associated with the same vulnerability. The model inputs include
the titles and content of the PoCs. We constructed the training
dataset using pairs of PoCs: those with the same CVE ID served
as positive samples, and those with different CVE IDs as negative
samples. Given that PoCs with CVE IDs comprise only 13.8% of
our dataset, we selected 600 positive and 5,400 negative samples,
maintaining an 8:1:1 training split. The model achieved an accuracy
of 97.3% on the test set, validating the effectiveness of our approach
in linking PoCs based on content similarity and software identity.

4.2.3 Results of Completion by Related PoCs. To ensure that paired
PoCs accurately reflect the same exploit process, we conducted
threshold-setting experiments and established distinct thresholds
for PoCs linked by CVE ID. For code-based PoCs, the threshold
was set at 0.5, while for text-based PoCs, we set it at 0.95. Utilizing
these specific thresholds and completion rules, we carried out an
information completion exercise across multiple PoC sources. The
outcomes of this exercise are illustrated in Figure 2. The displayed
bar graph details the number of PoCs containing each aspect both
before and after the completion process, and the line graph high-
lights the incremental completions sourced from various databases.
We completed a total of 27,901 PoC reports across four datasets,
focusing on those originally lacking specific aspect information.
Furthermore, we completed 4,613 to 12,640 PoC reports by complet-
ing seven different aspects that were originally missing from these
PoCs. Due to the originally small number of Verification Oracles,
the number of PoCs that could be completed was limited to just
184. For the significantly lacking Trigger Step, we completed over
5,002 PoCs. Additionally, for the crucial aspects of Test Platform and
Software Version, which are vital for reproducing vulnerabilities, we
completed more than 12,640 and 4,613 PoC reports, respectively.
From the completion results across different sources, it is clear
that the four datasets showed varying degrees of improvement
across the eight aspects. Notably, Seebug exhibited significant en-
hancement, with completions for Test Platform increasing by over
20%, and both Title and Author exceeding 15%. These gains are
largely due to substantial missing information in the original PoCs.
In summary, our approach of leveraging related PoCs for aspect
completion has proven highly effective, significantly enriching

1777

Lingxiao et al.

the quality and completeness of PoC information across multiple
sources.

5 Conclusion

In this study, we collected PoC reports from 4 different sources and
defined 8 key aspects of PoCs, revealing that on average only 56%
of these aspects are present across sources. We used CVE entries
linked via CVE IDs to supplement missing aspects in PoCs, suc-
cessfully completing 58,222 PoCs with 133,493 additional aspects.
We utilized PoCs from various sources for information completion,
employing methods based on CVE IDs and model recognition to
establish connections between different PoCs. To ensure the relia-
bility of our approach, we further classified PoCs into text and code
types, assigning specific similarity calculation methods to each type.
Ultimately, this strategy enabled the successful completion of 27,901
PoC reports using related PoCs from different sources. In total, we
completed 69,583 PoC reports, demonstrating the feasibility of this
method and significantly enhancing the reliability of PoC data.

References

[1] 2024. Qualys Survey of Top 10 Exploited Vulnerabilities in 2023 | Qualys Security
Blog. https://blog.qualys.com/qualys-insights/2023/09/26/qualys-survey-of-top-
10-exploited-vulnerabilities-in-2023.

Mehran Bozorgi, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2010.
Beyond heuristics: learning to classify vulnerabilities and predict exploits. In
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. 105-114.

Cxsecurity. 2024. CXSECURITY.COM Free Security List. https://cxsecurity.com/.
Exploit Database. 2024. Seattle Lab Mail (SLmail) 5.5 - POP3 'PASS’ Remote
Buffer Overflow (1). https://www.exploit-db.com/exploits/638.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Hao Guo, Sen Chen, Zhenchang Xing, Xiaohong Li, Yude Bai, and Jiamou Sun.
2022. Detecting and augmenting missing key aspects in vulnerability descriptions.
ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 3 (2022),
1-27.

Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong, and Heejo Lee. 2021. OC-
TOPOCS: automatic verification of propagated vulnerable code using reformed
proofs of concept. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 174-185.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the reproducibility of crowd-reported
security vulnerabilities. In 27th USENIX Security Symposium (USENIX Security
18). 919-936.

OffSec. 2024. Exploit Database. https://www.exploit-db.com/.
Packet. 2024. Packet Storm. https://packetstormsecurity.com/.
Seebug. 2024. Seebug. https://www.seebug.org/.

Packet Storm. 2024. SLMail 5.1.0.4420 Remote Code Execution.
packetstormsecurity.com/files/161526.

Octavian Suciu, Connor Nelson, Zhuoer Lyu, Tiffany Bao, and Tudor Dumitras.
2022. Expected exploitability: Predicting the development of functional vul-
nerability exploits. In 31st USENIX Security Symposium (USENIX Security 22).
377-394.

Jiamou Sun, Zhenchang Xing, Xin Xia, Qinghua Lu, Xiwei Xu, and Liming Zhu.
2023. Aspect-level information discrepancies across heterogeneous vulnerability
reports: Severity, types and detection methods. ACM Transactions on Software
Engineering and Methodology 33, 2 (2023), 1-38.

Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,
Bingchang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From proof-of-
concept to exploitable. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1914-1927.

Jun Ye. 2011. Cosine similarity measures for intuitionistic fuzzy sets and their
applications. Mathematical and computer modelling 53, 1-2 (2011), 91-97.

—
o)

e
Lo

https://

[15]

[16

(17]

Received 9 March 2025; accepted 10 April 2025

https://blog.qualys.com/qualys-insights/2023/09/26/qualys-survey-of-top-10-exploited-vulnerabilities-in-2023
https://blog.qualys.com/qualys-insights/2023/09/26/qualys-survey-of-top-10-exploited-vulnerabilities-in-2023
https://cxsecurity.com/
https://www.exploit-db.com/exploits/638
https://www.exploit-db.com/
https://packetstormsecurity.com/
https://www.seebug.org/
https://packetstormsecurity.com/files/161526
https://packetstormsecurity.com/files/161526

	Abstract
	1 Introduction
	2 Background
	2.1 Diverse PoC Submission Templates for Multiple Platforms
	2.2 Motivating Example

	3 Data Preparation
	3.1 Data Collection
	3.2 Categorizing PoC into Code and Text

	4 Empirical Study
	4.1 Evaluating Information Deficiency of PoC Reports
	4.2 Completion of PoC Aspects Based on Multiple Sources

	5 Conclusion
	References

